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Abstract 

A general program for the refinement of quasicrys- 
talline structures using diffraction data is presented. 
The program can be used for both icosahedral and 
polygonal quasicrystals. The refinement process is 
based on the fitting of the structural model to experi- 
mental diffraction data and observed density and 
chemical composition. Superspace formalism is used 
for the structure description and the hypersurfaces in 
superspace describing the atomic positions are 
assumed to be parallel to the internal space. No 
additional a priori assumption on the form of the 
atomic hypersurfaces is necessary except that the 
deviations of the atomic-surface contours from a 
spherical shape do not contain very short wave 
components in a significant amount. The contours of 
each symmetry-independent atomic hypersurface in 
internal space are parametrized in terms of linear 
combinations of radial functions (surface harmonic) 
invariant for the hypersurface point group in internal 
space. This allows a continuous refinement of the 
structure in terms of symmetry-adapted parameters 
consistent with the symmetry restrictions resulting 
from the postulated superspace symmetry. The pro- 
gram requires an initial very approximate guess of 
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the structure in terms of 'spherical' hypersurfaces of 
which only the symmetry centres are known with 
confidence. The continuous parametrization of the 
hypersurfaces does not a priori restrict their form, 
except in its degree of complexity or fine detail, 
which is limited by the number of terms considered 
in the linear expansion of the surface contours. In 
general, the number of surface harmonics considered 
should be consistent with the accuracy allowed by 
the experimental data set. The refinement process 
can be performed either by a full least-squares 
method or by means of a simplex algorithm. The 
physical consistency of the refined hypersurfaces with 
respect to the predicted density, chemical composi- 
tion and interatomic distances is controlled by 
including additional 'penalty functions' in the 
parameter to be minimized. 

I. Introduction 

Accurate determination of the structures of quasi- 
crystals (QCs) is still an open problem. The introduc- 
tion of superspace formalism (Bak, 1985: Janssen, 
1986) represented important progress towards 
achieving a quasicrystalh~graphy comparable with 
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ordinary crystallography. Under the superspace 
approach, the field has developed rather quickly and 
methods of structural analysis of QCs have greatly 
improved (Janot, de Boissieu, Dubois & Pannetier, 
1989; de Boissieu, Janot & Dubois, 1990: Cahn, 
Gratias & Mozer, 1988a,b; van Smaalen, 1989~ 
Cornier-Quiquandon, Quivy, Lefebvre, Elkaim, 
Heger, Katz & Gratias, 1991; Steurer, 1990, 1991; 
Jaric & Qiu, 1991); however, important difficulties in 
attaining accuracies comparable with those of ordi- 
nary structural crystallography have been pointed 
out (de Boissieu, Janot, Dubois, Audier & Dubois, 
1991; Cornier-Quiquandon, Gratias & Katz, 1991). 
In the superspace description, the structure-solution 
problem is translated into the determination of a 
periodic scalar function of n variables within its unit 
cell (superspace density); n being the rank of the 
diffraction diagram. Such a task is practically impos- 
sible without a previous hypothesis of the form of 
the function to be determined. Part o1" this modelling 
consists of the assumption that the superspace den- 
sity is a set of (n-3)-dimensional hypersurfaces or 
atomic surfaces (ASs), essentially perpendicular to 
the real space in the superspace and weighted by the 
corresponding atomic scattering densities (electronic 
density for X-ray diffraction) along the real space. 
The structure analysis is then basically reduced to the 
determination of the imposition and shape of these 
ASs in the n-dimensional superspace. The centres of 
the ASs (usually at high-symmetrical points) and 
their approximate sizes can normally be determined 
from Patterson analysis (Cahn, Gratias & Mozer, 
1988h; Steurer, 1989). Any further resolution of the 
structure is usually done by means of further model- 
ling, i.e. the introduction of additional hypotheses on 
the shapes of the ASs. Typically, the ASs are con- 
sidered to have specific polyhedral shapes with only 
one or two adjustable parameters. There are various 
arguments leading to the hypothesis of polyhedral or 
other specific forms for the ASs: steric requirements 
(de Boissieu, Janot, Dubois, Audier & Dubois, 
1991)~ physical plausibility of atomic displacements 
corresponding to movements of the superspace den- 
sity along directions perpendicular to real space 
(Frenkel, Henley & Siggia, 1986 ;  Cornier- 
Quiquandon, Gratias & Katz, 1991); restriction to 
tiling models (van Smaalen, 1989); experimental evi- 
dence from Patterson or Fourier analysis etc. 

On the other hand, the possibilities of a general 
approach based on the parametrization of the ASs 
with continuous parameters and their subsequent 
refinement, analogous to the methods of standard 
crystallography, have been scarcely investigated. We 
have proposed (Elcoro, P6rez-Mato & Madariaga, 
1992) the use of truncated series of symmetry- 
adapted functions for a continuous parametrization 
of the ASs under the assumption that they are 

perpendicular to the real space. It was shown that a 
few parameters could be, in general, sufficient for a 
description of the ASs consistent with the expected 
experimental accuracy and that the use of a continu- 
ous parametrization of the ASs does not exclude the 
resulting fitted ASs conforming (within experimental 
resolution) to polyhedra. In the following, we present 
a general least-squares retinement program for poly- 
gonal and icosahedral QCs, named QUASI, based on 
this approach. The paper is organized as follows: in 
,~ 2 and 3, the superspace description of a QC and its 
superspace symmetry are briefly reviewed and some 
of the structural parameters used in the program 
computations are defined; § 4 is devoted to describ- 
ing the parametrization of the AS in a general case; 
in §§ 5 and 6, this parametrization is applied to the 
polygonal and icosahedral cases and the symmetry- 
adapted functions used by the program are given; in 
§ 7, the general structure of the program QUASI and 
its possibilities are discussed. The results of the struc- 
ture refinement of the icosahedral QC AI~TCu~Li32 
using QUASI and previously published data sets (de 
Boissieu, Janot, Dubois, Audier & Dubois, 1991) are 
presented in a subsequent paper. 

2. Superspace description of quasicrystals 

We summarize here the superspace formalism from 
an applied viewpoint, as required for the develop- 
ment of a refinement program. Following Bak (1985, 
1986), we introduce the superspace as the space of 
the phases of a minimal set of fundamental modula- 
tions in the structure and, accordingly, we stress the 
adimensional character of the superspace and its lack 
of predetermined metric. 

Let us consider a QC with a diffraction diagram of 
rank n > 3, where a minimal basis of wave vectors 
{k~ .... k,,} has been chosen such that any diffraction 
vector, H, is indexed in the form 

t l  

H = ~ h,ki (~) 
i = 1  

with h; integers. The structure of the QC is then 
described by a scattering density p(r) given by 

p(r) = ~ F(H) exp _ • r , (2) 
H 

where F(H) is the structure factor of the three- 
dimensional QC structure for each diffraction vector 
H. A scalar function of n variables, the so-called 
superspace density p,(O~ ..... 0,,), can then be defined 
by the expression 

p,(0) = p,.(0, .... .  0,,)= ~ F(H) exp . 
H 

(3) 
By definition, the superspace density is periodic for 
all the variables 0;, with period 1, and may also have 
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additional centring periodicities depending on the 
possible systematic absences of the structure factor. 
According to (3), F(H) is also the structure factor of 
the superspace density: 

I I z \ 

F(H) = fdO,  ...fdO,, p,(0, ..... 0,,) exp [2-s-i 5- h, Oi} 
() [) ~ t'~'- I / 

= fd(~p,((~) exp 2~-ih -(~, (4) 

where we use the symbols (~ and i1 tk)r the set o f  para- 
meters (0j, 02 ..... 0,,) and (hn, h, . . . . .  h,,), respectively, 
and we represent the summation in h,O, by h" 0. 

Rigorously, the variables 0, are adimensional and 
can be interpreted as the phases of the modulation 
waves associated with the wave vectors chosen for 
the basis in (1) (Bak, 1985, 1986). The n-dimensional 
space corresponding to these n phases can be identi- 
fied with what is usually called 'superspace'. Thus 
interpreted, this is in fact a space of n scalar 'phases" 
and has no predetermined metric, which can be 
introduced arbitrarily. Usually, the superspace 
formalism is formulated with a particular implicit or 
explicit choice for this metric, which allows a simple 
geometrical picture of the superspace density. For 
instance, in the case of icosahedral quasicrystals, the 
superspace lattice is usually given under a 'hyper- 
cubic' representation (the set of vectors k~ having 
been adequately chosen), so that the variables 0, are 
associated with an orthonormal basis. 

It should be noted that the definition of the super- 
space density (3) is still meaningful (but trivial) in the 
case of a normal crystal, where the rank n coincides 
with the dimension of the real space; in this particu- 
lar case, the three phases 0~, i =  1, 2, 3, can be 
interpreted as the relative coordinates, x,, with 
respect to three vectors in direct space reciprocal to 
the k~ vectors used in the indexing (1); the superspace 
density p,(x~, x2, x3) reduces simply to a mapping of 
the scattering density on the space of relative coordi- 
nates for the chosen unit-cell parameters. 

Comparison of definition (3) and equation (2) 
shows that the real-space QC scattering density, p(r), 
is given by the section of the superspace density 
defined by 

p(r) = p.,(O, = k, "r .. . . .  0,, = k,," r). (5) 

Hence, the superspace density restricted to the 
subspace carrying this section represents a map of 
the scattering density in real space; we call this 
subspace 'parallel space', being different from real 
(physical) space. 

The rational independence of the wave vectors {k} 
and the periodicity of the superspace ensure that any 
value of the superspace density in a unit cell will be 
realized at some point on the section defined by (5); 
conversely, the value of the scattering density at any 
point r of real space, given by (5), is equal to the 

value of the scattering density at some point inside 
one unit cell of the superspace density. There is, 
therefore, a one-to-one mapping between the super- 
space density in one unit cell and the aperiodic 
scattering density in real space. From this viewpoint, 
the superspace density is just a form of 'book- 
keeping' all the atomic positions in real space. Thus, 
for point-like atoms and a finite sample, the super- 
space density in a unit cell would consist of a set of 
about 1023 points, corresponding to all atomic posi- 
tions in real space. The introduction of the super- 
space description would be of no use if we had to 
determine the positions of all these points? What 
makes the superspace approach really useful is that, 
in real quasicrystalline materials, the set of these 
points in the superspace unit cell typically forms a 
few closed domains (dense in the idealized case of an 
infinite sample) that can be described by a few 
parameters. This property of the superspace density 
is directly seen, for instance, in superspace Patterson 
analysis of experimental data. Indeed, the possibility 
of describing the superspace density by means of a 
small number of parameters seems to be directly 
related to the hierarchy of diffraction intensities 
observed experimentally that allows in practice the 
indexing of a diffraction diagram that is mathemati- 
cally dense. 

We can introduce in the superspace a variable 
transformation (x, x~) = A-'(} such that x belongs to 
the parallel space and x~ to a complementary 'inter- 
nal space'. First, we choose an arbitrary vector basis 
in real space, {aj}, to be used in the description of any 
generic vector in real space: 

3 

r = ~ x/aj. (6) 
/ = 1  

The wave vectors {ki} of the basis in (1) can be 
expressed in terms of the corresponding reciprocal 
basis {aj*}: 

3 

k i=  Z a0a/*, i =  1 ..... n. (7) 
i = l  

According to (5), a generic point 6 = (0. ..... 0,,) 
can then be related to the coordinates xi by an 
equation of the form 

3 n -  3 

O~ = ~ ai~xi+ ~ yi/.x'~, i=  1 . . . . .  n, (8) 
i = t /= ] 

so that a vector in real space given by the coordi- 
nates xi in (6) corresponds to the superspace point 
given by (8) with xt j=0.  The superspace density at 
this point represents the scattering density at the 
corresponding point in the real space. Symbolically, 
we can rewrite (8) as 

0 = A ~ = A  (9) 
X I  
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with A given by 

A ~ . . .  " , . . .  " , 

~ r 1 - . .  O ' n  3 ~ n  1 . . .  ' ~ n  n - 3 / 

(10) 

It should be stressed that, while the parameters a~j 
are determined by the set of wave vectors {kg} used in 
the indexing and the vector basis {a,}, chosen in real 
space, the values of Y0 are arbitrary, except for the 
condition that the determinant of A is nonzero. The 
choice made defines the internal space, given by .vi = 
0, i = 1  ..... 3. 

If we call {~} the basis in the superspace corre- 
sponding to the coordinates 0~, the matrix A rep- 
resents a transformation to a new basis {/~} so that 

/~, = Aj~j. (11 ) 

Note that, although the parallel space generated by 
the subset {~, ~2, ~3} is isomorphous to real space, its 
metric is at this point undetermined. 

As mentioned above, the essential assumption in 
the superspace description, confirmed by experiment, 
is that the superspace density defined by (3) can be 
described by a small set of closed domains where the 
superspace density is different from zero, i.e. the 
superspace density can be described in the new 
coordinates as 

p,(x, xt) = S'p,,,~u)(x- xu(x/)) • r/u(xl), (12) 

with r/u(x~)= 1 if x~ belongs to a certain closed 
domain in the internal space, W~,, and r/~,(x~)=0 
otherwise. The function P,,,(u~ is the atomic scattering 
density of a certain atom of kind m associated with 
the domain Ix; in the case of disorder, it can be an 
effective density given by the relevant occupation 
probabilities. The sum in (12) extends over all the 
existing closed domains W~, in the superspace den- 
sity. The structure in real space is then given by the 
function p.,.(x, 0), where x = (&, x2, x3) represents a 
real-space vector given by (6). The form (12) ensures 
that the section corresponding to parallel space is 
given by a set of individual atoms located at the 
positions x,,(0) associated with those domains W~, 
that intersect parallel space. The atomic surfaces (AS) 
defined by the domains Wu and the functions x~,(x~) 
and the atom kind associated with each describe 
completely the superspace density. The number of 
independent ASs is limited because of the symmetry 
properties (periodic and rotational) of the superspace 
density p,, as described by a certain superspace 
group (see § 3). 

As a consequence of the lattice periodicity of the 
superspace density and the incommensurate orienta- 
tion of the parallel section, any point of any AS 
within a superspace unit cell represents an atom in 

parallel space, situated at the position where a trans- 
lational equivalent AS intersects parallel space 
through this point. Accordingly, the average concen- 
tration in real space (number of atoms per unit 
volume) of an atom type m, as the result of a certain 
AS in the superspace unit cell 'occupied' by this atom 
m, is given by 

C,,,= lAIW~/W(a,), (13) 
where V~, is the volume of the domain W u, IAI is the 
determinant of the transformation matrix A in (9) 
and V(a~) is the volume of the cell in real space 
defined by the vectors {a~}. In a more general case, if 
atom m is 'present" in a set of ASs within the unit 
cell, with some 'occupation' probabilities p,,,(#), the 
total average concentration of atom m is 

C,,, = [ I A l / V ( a , ) ] ~ p , , , ( # ) v , ,  (14) 
/ .t  

where the sum extends to all ASs # in a superspace 
unit cell for which p,,,(#) is different from zero. The 
average density and composition corresponding to 
the structural model can be derived directly from 
(14), when considered for each atomic species present 
in the material. 

From (4), the structure factor of a QC described 
by the superspace density (12), for a (real-space) 
diffraction vector H, can be written in the form 

F(H) : [IAI/V(a,)]ZZ p,,,(#)./'I,,(H) 
/t ' t  

x f dx, exp{27rz{H" r~,(x,)+h,- x,]} 
I 'V  u 

x exp[ " '" - H/3,~(xz)H], (15) 

where the sums extend to all ASs Ix in a superspace 
unit cell and to all atom types n7 within each AS, 
f,,(H) is the scattering factor of atom m, p,,,(#) is the 
occupation probability of atom m within the AS #,  
while ru(x~) is the real-space vector associated by (6) 
with the parallel-space vector x~,(x~) and h~'x~ rep- 
resents Zh/~.~:~,, where the (n - 3) components of h /are  
given by the transformation A: 

/1 t t  

hli = Z A j(,+3~h,= 5f, yjit!, i=  1 ... . .  n - 3 ,  (16) 
i = t  i = t  

with hi being the indices in (1). Only standard ther- 
mal factors have been introduced in (15); physical 
arguments against including additional thermal fac- 
tors for the 'internal part ' ,  hi, of the diffraction 
vector can be found in Perez-Mato, Madariaga & 
Elcoro (1991). Each atom represented by a point 
within an AS Iz is physically inequivalent to any 
other one; therefore, thermal factors need not be 
constant throughout an AS. Hence, in (15), thermal 
factors have been assumed to be dependent on xl; 
however, this variation is expected to be weak with 
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consequences on the experiment that are rather 
subtle and essentially negligible in s tandard experi- 
mental data. 

Let us suppose now that the ASs are all parallel to 
an (n -3 ) -d imens iona l  subspace and the transfor- 
mation A is chosen such that the internal space 
coincides with it. In this case, the functions xu(x~) = 
x u are independent of xl, for all/.~, and the structure 
factor can be expressed as 

F(H) = []AJ/V(a~)]E E P,,,(# )f , , (H) 
/.I- m 

x exp ( - 1:I,8 ~'H) exp (2rril~-0,,) 

x J" dx~ exp [2rrih/• ( x l -  x,u)], (17) 

where, in general, we have considered a different 
thermal factor for each atom type associated with a 
single AS, and 6~1 = A(x,,,x~ u) is some 'centred point '  
chosen in the AS # ,  with x~u being its internal 
coordinate.  

3. Rotational symmetry and superspace groups 

The symmetry of the quasicrystalline structure (2), 
the so-called superspace group of  the QC, will be 
given by the set of rotations in real space and 
translations in the superspace, {R[[}, such that the 
structure factor in (2) satisfies, for any H, 

F(I~H) = F(H) exp ( -  2 ~ i h .  t). (18) 

This relation directly implies that the diffraction 
diagram should have the rotational symmetry corre- 
sponding to the set of  rotations {R}. The observed 
extinction rules are to be related to the nonprimitive 
translations [ of some superspace-group elements by 
the usual method of considering (18) in the case that 
I ~ H = H .  Relation (18) is trivially fulfilled for the 
superspace lattice translations {Elm,  . . . .  ,,,,,} (m~ inte- 
gers), already considered in the preceding section. 
The symmetry relation (18) is difficult to visualize in 
direct space; it means that the rotation R transforms 
the structure p(r) in a new atomic configuration that 
is physically undistinguishable from the original one 
and energetically equivalent (Rokhsar ,  Wright & 
Mermin, 1988; Mermin, 1991). After the rotation, 
the original structure can be 'recuperated" by a 
translation t of the n independent phases correspond- 
ing to the set of rationally independent wave vectors 
{k} chosen for the indexing (1). In the superspace 
density (3), however, a superspace group operat ion 
{R[t} has a simple interpretation if an n × n matrix 1~ 
is introduced that has as coefficients the integers r 0 
that describe the t ransformat ion of the basis vectors 
k, with R: 

/ t  

R k i  = ,:_ \" rok/,  t o =  integers. (19) 
i = l  

From (3), (18) and (19), it is s traightforward to 
demonstra te  that the superspace density defined in 
(3) satisfies 

p,(l~(J + i) = p,(0), (20) 

where we use the obvious notat ion I~  for the point 
in superspace given by the coordinates EriiOj. 
According to (20), {l~]i} can be considered a sym- 
metry operat ion of  the superspace density. From (18) 
or (20), it is obvious that the usual composi t ion law 
between space-group operat ions is satisfied: 

li,}{f 21i_,} = f elf ,i= + i,}. (21) 

From its definition, it can be easily seen that the 
parallel subspace is invariant  for any superspace 
t ransformat ion 1~ included in the superspace group 
and the vectors ~, (i = 1, 2, 3) t ransform in the same 
way as the vectors {a~} for the corresponding three- 
dimensional t ransformat ion R. On the other hand, 
the choice of the coefficients Y0 in the matrix A can 
always be made in such a way that the internal space 
is also invariant,  so that 

{0 0] A I I~A = R1 ' 

where R is the 3 x 3  matrix associated with the 
corresponding three-dimensional rotat ion in the 
basis {a,} and R~ is an (n -3 ) -d imens iona l  matrix. In 
the rest of  the paper, we assume that the transfor- 
mation A has been chosen so that (22) is fulfilled and 
that, within this choice, the ASs are parallel to the 
defined internal space. 

4. Parametrization of the atomic surfaces 

According to (20), analogous to what happens in 
ordinary crystal lography for the actual atoms, the set 
of ASs in the superspace unit cell that describe the 
superspace density will be symmetry related. As dis- 
cussed above, in general, an AS ~ in the unit cell can 
be described by some 'centre' ,  e u, a closed domain 
(relative to 6,~) in internal space, W,,, and the atomic 
occupation probabilities, p,,,(#); if {R]t} is an opera- 
tion of  the superspace group of the structure, there 
will also exist an AS u in the unit cell, with the same 
occupation probabilities, centred at 6,, = !~6~, + t + | 
(with I being some superspace lattice translation), 
and its domain,  W,, (with respect to 6,,), related to 
W~, by the internal-space rotation R/assoc ia ted  with 
R (W,, = R,W~,). 

When the AS occupies a special position for some 
superspace-group operation,  the symmetry-related 
AS coincides with the original one. In this case, the 
centre 6~, can be chosen so that 6,, = 0u and W~, = 
R~W u. In general, the domain W,, will conform to 
the point-group symmetry  P~ defined by the set of  
operations R~, associated by (22) with the operat ions 
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I~ that describe the point-group symmetry in super- 
space of its centre 0 , .  

Given this rotational symmetry, the structure 
factor of the QC can be expressed as 

F(H) = []A]/V(a,)] "~Z p,,,(#)./I,,(H) 
l.Z, m 

x 2 exp (-R--n/3~'RH) exp [2rrifi • (f16. +i)]  
R 

x f dxlexp(2rrih1" x/), (23) 
R, H '  

where the sum in /., extends to all symmetry- 
independent ASs in the unit cell and, for each 
independent AS, the sum in {Rlt} is restricted to a 
minimal set of operations capable of generating the 
orbit of the symmetry-related AS within the super- 
space unit cell. 

From the viewpoint of optimization of numerical 
calculations, it is more convenient to express (23) in 
the form 

F(H) = [IAI/V(a,)] '£ p,,,(#)f,,(H) 
/.*, m 

x ~ exp (-R'-H ,8~'RH) exp [2~ifi" (1~0,~ + [)] 
R 

x f dx~ exp [2~i(i/,h~) • x~]. (24) 

The domain W, of any AS # is described by its 
boundaries in internal space. The set of ASs 
describing a QC can in general be chosen such that 
their boundaries can be given by two radial func- 
tions, r~(q~, q~2 ..... q~,,-4) and r~(q~, q~2 . . . . .  q~,,-4), 
which define the limits (internal and external, respec- 
tively) of the volume occupied by the domain for any 
direction in the internal space specified by the n - 4  
angles q~i. These radial functions are defined with 
respect to the centre of the AS whose position in the 
superspace unit cell determines the point-group sym- 
metry to which the AS should conform. 

The rotational relation W. = R~W,, between the 
domains of two symmetry-related ASs, implies the 
following relation between their boundary radial 
functions: 

r~(~. ..... ~P,,-4)=r~[R['(~, .. . . .  q~,-4)], , /=in.,  ex., 
(25) 

where R[  ~(~1 ..... ~',,-4) represents the set of angles 
that define the direction in the internal space 
obtained by the action of the internal-space rotation 
R/~ over the one given by (q~ ..... ~p,,--4). 

For superspace-group operations keeping 
invariant the AS (u=p.) ,  the symmetry relation (25) 
becomes an invariance equation for the radial func- 
tion and, therefore, a symmetry restriction on the 
form of the AS boundaries in internal space. If Pu is 
the point group of the AS in internal space, as 
defined above, the boundary radial functions should 

be Pu invariant. The obvious choice for a continuous 
parametrization of these radial functions are the 
so-called invariant "surface harmonics' (Bradley & 
Cracknell, 1972). i.e. symmetry-adapted radial 
functions that transform according to the identity 
representation of the point group P, .  if 
{Z,(~#, ..... ,#,,-4)} is a complete set of orthonor- 
malized P,-invariant  surface harmonics, the radial 
functions can then be expressed in terms of a linear 
combination of them: 

r~(~'l ~#,, 4) = \" " "  ai Zi(q~l .,q~,, 4), . /=in . ,ex.  ., . . . ,  ~ ~ . .  _ 

i = l  

(26) 

In general, the set of functions Z~(q~ .... .  ~,,, .~) can 
be chosen such that they are ordered according 
to an increasing degree of complexity. In most of 
the QC. the ASs are centred at points of the super- 
space unit cell with very high symmetry; this means, 
in general, that the point-group symmetry of the 
AS in internal space P ,  is also equally high. This 
situation guarantees that, in most cases, the number 
of invariant surface harmonics up to a high order 
of complexity is quite small and a truncated expans- 
ion (26) with a few terms can be enough to describe 
the AS surface boundaries with sufficient accuracy. 

The thermal tensors I~,' in (24) are also symmetry- 
restricted by the condition 

R[3. R = 13. (27) 

for all transformations R belonging to the AS point- 
group symmetry. 

For all relevant AS point-groups in every QC type 
(icosahedral or polygonal), the program Q U A S I  
either contains or builds normalized surface 
harmonics Z~ (up to some order). For each point 
group, the function variables refer to an orthogonal 
coordinate system with a fixed chosen orientation 
with respect to the point-group operations. The 
orientations chosen in each case are indicated in § 5. 
The actual orientation in internal space of the point- 
group of each symmetry-independent AS must be 
taken into account in the calculations by introducing 
a matrix F that relates the internal coordinates x~, 
defined by the transformation A, with a coordinate 
system having the required standard orientation 
(with respect to the AS point-group symmetry opera- 
tions). In other words, for each symmetry indepen- 
dent AS #,  an orthogonal ( n -  3 ) x  ( n -  3) matrix, 
F , ,  must be introduced, such that the set of matrices 
F,RzF~-l,  for the operations R~ [see (22)] belonging 
to P, ,  have the matricial form associated with the 
point-group operations in the standard coordinate 
system chosen in the program for describing the 
functions Z,. 

The general expression for the structure factor 
used in the program is, then, 
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F(H)=[[AI/ V(a,)] ~_\" p,,,(#).L,,(H) 
l a .  . m 

x x7 exp ( - RH ~ , R H )  
R 

x exp [2rrih • (i~t~. + i ) ]Y  de,  ...d~,,_ 4 
12 Xf{~]Cl~cxZi(~l . . . . .  ~,,- 4)dr J(r.~l . . . . .  ~.-4) 

× exp [2~-i(I~,, t lS.;h;)" x;] 

x ~-af" 'Z , (¢  ~ ..... ¢,,- 4)}, (28) 
t 

where J(r, ¢~ ..... ¢ , -4 )  is the Jacobian of the trans- 
tbrmation to generalized spherical variables. 

The structural parameters that specify the model 
are then the wavevectors {k,}, the centres of the 
independent AS 0~,, the occupation probabilities 
p,,,(p.) in each AS, the thermal tensors [3~,', and the 
coefficients a~ m and a~ ~ .  

A = 

( r -  1)/2 (2+ 7) I 2/2 

- r / 2  [ ( r -  1)(2 + r) ~2]/2 

- r / 2  - [ ( r -  1)(2 + r) ~ 2 ] /2  

( r -  1)/2 - ( 2 +  r) ~ 2/2 

0 0 

So the simplified expression for the matrix is 

I 2  12 2 -12  0 - 2  I~ / 
0 I 0 0 2-112] 

/ 
A =  - 2  L2 2 - , ~  0 2 12 2--12 . 

_ ,  0 0  , 

0 0 I 0 

(h) Decagonal case 

k; = (cos (27ri/5), sin (2rri/5), 0), i=  1 ..... 4, 

ks = (0, 0, 1). 

The rows of the matrix A are 

d; = (cos (2rri/5), sin (2-n-i/5), 0, cos (67ri/5), 

sin(67ri/5)), i=  1 . . . . .  4, 

ds = (0,0, 1,0, 0), 

therefore. 

0 - r / 2  - [ ( 7 -  1)(2 + r)~ 2]/2 

0 ( r -  1 )/2 (2 + ~.)1 2/2 

0 ( r -  1)/2 - ( 2 +  r) ~ 2/2 , 

0 - r/2 [(y - 1 )(2 + r) ~ 2]/2 

1 0 0 

5. Po lygonal  quas icrysta ls  

Polygonal QCs are those for which the set of modu- 
lation wave vectors k, in the indexing (1) can be 
chosen in such a form that ( n - 1 )  vectors lie on a 
plane and are related by a p-fold rotational axis, 
while the nth vector is directed along this axis, 
perpendicular to the plane. Up to now, octagonal, 
decagonal and dodecagonal quasicrystals ( p = 8 ,  10 
and 12, respectively) have been obtained. In each of 
these cases, the rank n of the diffraction diagram is 5. 

In the following, possible convenient choices 
(Steurer, 1990) of the indexing wave vectors {k;} and 
matrix A for the three types of polygonal QC when 
the refinement program is used are listed (the wave 
vectors are referred to a Cartesian coordinate system 
with unit vectors ]a,* I = ]a2*] and [a3*l ;~ la,*l). 

(a) Octagonal case 

k, = (cos (2rri/8), sin (2rri/8),O), i=  1 ..... 4, 

k5 = (0, 0, 1). 

The rows of the matrix A are the five-dimensional 
vectors 

d; = (cos (2rri/8), sin (2rri/8), O, cos (67ri/8), 

sin (67ri/8)), i=  1 ..... 4, 

d5 = (0,0, 1,0, 0). 

7 being the 'golden mean',  (1 + 5 ~ 2)/2. 

(c) Dodecagonal case 

k ; =  (cos(2rci/12),sin(2rri/12),O),  i= 1 ..... 4, 

k5 = (0, 0, 1). 

The rows of the matrix A are 

d; = (cos (2tril l2),  sin (2rci/12), O, cos (lOrri/12), 

sin ( 10rri/12)), i = 1 ..... 4, 

d5 = (0, 0, 1,0, 0), 

therefore, 

A = 

31'2/2 1/2 0 - 312/2 1/2 

1/2 3~2/2 0 1/2 -312 /2  

0 1 0 0 1 . 

L - ; / 2 3 ' 2 / 2 0  - 1 / 2 0  I 0 3'2/20 

The above choices for the indexing wave vectors 
and matrix A are recommended, for with them the 
resulting matrices R; are orthogonal,  but the pro- 
gram allows any other choice compatible with condi- 
tion (22) for all point-group operations in the QC 
superspace group, provided that the input matrices F 
are in accordance with this choice. 
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In the case of a polygonal QC of rank 5, such as 
octagonal, decagonal and dodecagonal QCs, the 
point-group symmetry of the two-dimensional AS in 
internal space is either a rotational symmetry of a 
certain order (N), a symmetry line (m) or both (Nm).  
For instance, in a decagonal QC, ASs may have 
point-group symmetries like 1, 5, 10, m, 5m or 10m. 
In this case, the 'surface harmonics' Zj(~o) can be 
simply chosen as the successive normalized cosine 
and sine functions in a symmetry-restricted Fourier 
series: 

oe 

r(q~) = [ao/(2rr) I/2] + y" a/rr- I/2 COS (N/g0 
j =  I 

ae 

+ Y. b/rr-,/2 sin (N/q~). (29) 
. j =  I 

If the point group of an AS contains one or more 
symmetry lines, the orientation of the standard co- 
ordinate system is oriented so that the angle q~ is 
relative to one of the symmetry lines and therefore 
the sine functions in (29) are dropped; the actual 
orientation of this reference symmetry line with 
respect to the basis in internal space defined by the 
transformation A is taken into account through the 
matrix F, as explained in the previous section. 

6. I cosahedra l  quas i erys ta l s  

In the case of an icosahedral QC, the rank of the 
diffraction diagram is 6. A possible choice for the 
indexing wave vector [described in a cubic (ortho- 
gonal) vector basis with a3* and a2* directed along a 
fivefold axis and a twofold axis, respectively, of the 
diffraction diagram] is 

kl = 2-1'2(0,0, 1) 

k; = 2-1"2((2/5'"2) cos (2rri/5), (2/51;2) sin (27ri/5), 

( 1 / 5 " 2 ) ) ,  i =  2 ..... 6. 

The rows of the matrix A can then be chosen as, 

dt = 2 - 1 ; 2 ( 0 , 0 ,  1 , 0 , 0 ,  1) 

d; = 2-  ~"'2((2/5 ~"2) cos (2~ri/5), (2/5' ,2) sin (27ri/5), 

( 1/51"2), - (2/51'2) COS (4rri/5), 

- - ( 1 / 5 1 ' 2 )  sin (47ri/5), ( -  1/5' 2)), 

Therefore, 

A =  l 0  - 1''2 

0 

- - 7 "  

- - 7 "  

r - - I  

2 

i = 2  ..... 6. 

As in the case of a polygonal QC, any other choice 
of wave vectors and matrix A compatible with condi- 
tion (22) is possible. 

The internal space is three-dimensional; the spheri- 
cal harmonics referred to an orthogonal basis are 
then a natural choice to express any radial function: 

r(O,~p) = Z Cl,.Y'[fl(O,q~). (30) 
/ , m  

The subspaces of functions associated with a given 
index l are invariant for any proper or improper 
rotation R~. Hence, the set of symmetry-adapted 
orthonormalized functions (invariant for the point- 
group symmetry of the AS) can be chosen conform- 
ing to this previous decomposition: 

with 

r(O,~p) = Za.Zh(O,q~), (31) 
I.i  

/ 

Z,(O,~0)= ~ z,,,,(i)~'(O,~). (32) 
t n =  - / 

The coefficients au constitute the continuous 
parameters to be determined and fitted in the struc- 
tural diffraction analysis, while the coefficients zl,,,(i) 
are determined by the point-group symmetry of the 
AS and the normalization condition of the functions 
Z,. The index i allows for the eventual existence of 
several orthogonal invariant functions within the 
same subspace l. Obviously, the zeroth-order term in 

YY O " (31) is, in any case, the spherical harmonic ot ,+), 
corresponding to a spherical surface. If the point 
group is large enough, there will be many subspaces 1 
where no invariant function exists. For instance, if 
the site point-group symmetry of the AS is 53m, up 
to l = 15 only a single invariant function exists for / 
= 0, 6, 10 and 12 (Cohan, 1958; Laporte, 1948). 

The possible AS point groups that can be con- 
sidered by the program are listed in Table 1. The 
number of invariant surface harmonics up to / =  16 
for each point group and the orientation of the 
chosen coordinate system are indicated in the same 
table; their analytical expressions in terms of the 
spherical harmonics are listed in Tables 2 and 3. For 
the higher symmetries, the harmonics were calculated 
using the method proposed in another context by 
Michel (1992). The lowest-order functions were 
checked by comparison with the results of Cohan 

0 2 r - 1  0 

( r -  1)(2 + r)' 2 1 - ( r -  1) 

- ( r -  1)(2+ r) 12 1 - ( r -  1) 

- (2 + r) 12 1 r 

0 1 - 2  

(2 + r) 1,2 1 r 

0 2 r -  1 7 

[ (2 + r) 12 - 1 

- ( 2 + r )  '2 - 1  

(r-1)(2+r)120 -I-1 J" 

- ( r -  1)(2+ r) 1'2 - 1 
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Table 1. Point groups that, in the program QUASI,  can be associated with the symmetry o f  the atomic surfaces 
o f  icosahedral quasicrystals 

The second column indicates the generators for each possible point group in the standard coordinate system to which the spherical 
coordinates of the radial functions refer. In the last column, the limitations on the number of invariant surface harmonics for each point 
group are summarized; the lowest subspaces I that contain invariant surface harmonics and their numbers (in brackets) are listed. 

Point group Generators Harmonic surfaces 
0(1), 6(1), 12(1), 16(l) 

53m 

532 

3m 

5ra 

~m 

3m 

- cos(27r/5) sin (2rr/5) 0]  
~5 = -sin(2rr/5) -cos(2rr/5) 

0 0 - 

cos(2zr/5) - sin (2rr/5) 
C5 = sin(2zr/5) cos(2zr/5) 

0 0 

0] 

_ [ - cos(2rr/5) sint2rr/5) 0]  
- cos(2rr/5) C , = [ -  sin~2zr/5) ] 0 

cos(2rr/5) - sin (2rr/5) 
C~ = sin(2zr/5) cos(2rr/5) 

0 0 

0] 

_ [ -cos(2~'/3) sin(27r/3) 0]  
- cos(2rr/3) C 3 = [ -  sin(2zr/3) 1 0 - 

[ cos(2rr/3) - sin (2r/3) 
= cos(2rr/3) C3 [ sin(20/3) 0 

0] 

- 1/5.2 
C2 = 0 

2/5 '2 

_ i/5,2 
C2 = 0 

2/5' 2 

1 
m = 0 

0 

1 
m = 0 

0 

1 
m = 0 

0 

I 
m = 0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

2/5120 ] 

I/5 '2 

2/5'20 ] 

I/5 ~2 

O ]  
0 
I 

° 1 0 
I 

° 1 0 
I 

O ]  
0 
I 

0(1), 6(1), 12(I), 15(1), 16(1) 

0(I), 2(1), 4(1), 6(2), 8(2), 10(3), 12(3) .... 

0(1), I(I), 2(1), 3(1), 4(1), 5(2), 6(2), 7(2), 
8(2), 9(2), 10(3) .... 

0(I), 2(1), 4(2), 6(3),.8(3), 10(4), 12(5) .... 

0(1), I(I), 2(I), 3(2), 4(2), 5(2), 6(3), 7(3), 
8(3), 9(4), 10(4) .... 

(1958) and Laporte (1948). A graphical representa- 
tion o f  the lowest three surface harmonics (besides 
the sphere) for the point-group symmetry 53m is 
given in Figs. 1 and 2, where a section o f  each 
harmonic (of  arbitrary amplitude) superposed on a 
sphere is shown.  A three-dimensional representation 
o f  the second harmonic is also shown in Fig. 3. It 
can be seen that these three lowest surface harmonics 
already contain 'short-wavelength' components  and 
their combinat ion can be expected to be enough to 
reproduce the contour  o f  the AS up to an accuracy 
consistent with the experimental resolution. Signifi- 
cant fluctuations o f  much higher order on the sur- 
faces limiting the AS domains  are not expected, as 
they would imply quite intense Bragg reflections for 
high values o f  h; and this is not observed experimen- 
tally. 

7. The program QUASI 

The program QUASI minimizes the quantity X 2, 
defined as 

+ wo[(po- p,.)2/p2o], (33) 

which measures the deviation o f  the structural model 
with respect to the experimental evidence, w .  rep- 
resents the weight o f  each experimental structure- 

Table 2. Invariant surface harmonics for the point 
groups 5m and 3m for any subspace l 

The functions YT"(0,~,) and YT"(O,qO are connected with the 
spherical  h a r m o n i c s  by the re la t ions  

Y"/"(O,~o)  = 2 ' 2[y7(0,~o) + Y, "(0,~p)] 

YT""(O,~o) : i2 ' 2[Y"/ (O,qO - Y ,  '"(0,~,)]. 

The spherical harmonics are normalized and chosen in such a way 
that they are positive when both arguments are infinitesimal and 
positive. The surface harmonics for the point groups 5m and 3m 
coincide with those of the corresponding noncentred group for 1 
even and do not exist for I odd. [x] means the integer part of x. 

Point  g r o u p  H a r m o n i c  surfaces  

5m Y°(0,q0, Y~'"(O,q~) i = I . . . . .  [1/5] 

3rn Y'~(O,~o), ~" i = I, [1/3] Y ~  (0 .~ )  .... 

Table 3. Surface harmonics for the point group 532 up 
to l = 16 

T h e  f u n c t i o n s  YT"'(O,~o) and  YT''(0,~o) are def ined in T a b l e  2 T h e  
spherical  h a r m o n i c s  are c h o s e n  wi th  the s a m e  cr i ter ion as in T a b l e  
2. T h e  surface  h a r m o n i c s  for  the centred  g r o u p  5 3 m  are the s a m e  
except  for  t h o s e  wi th  / o d d  that  are forb idden .  

1 / = 0  Y°,(O,~o) 
2 1=6 ( l l ' 2 /5 )Y° (O ,qO+(14~2 /5 )y~ . ' (O ,~o)  

3 /=10 [247 '2 /25(3 '2)]Y° , , (O,q~)- (418 '2 '  ~., /25)Y ,o(0,q~) 
+ [374' 2/25(3' 2)] y l['/(O,qO 

4 l= 12 [3(119' 2)/25(5' 2)]Y°2(0,~o)+[2(143~ 2),/25(5' 2 ) ] y ~ ( O , ~ )  

+ [1482'-','25(5' 2)] y 1'~"(0,~o) 

5 / = 15 [ -  10(3335' 2)/871028~ 2]y ~~'(0,~0)+(1914' 2/871028' 2~y,, ,  ,,~ • 

+ [10( 1001' 2)/871028' 2] y ',~"(0,~o) 

6 / = 16 [4(5890' 2)/125(30' z)]Y °~(0.~o) - [102765'-'/125(30' 2)]y ~(0,~o) 

-[169694' 2/125(30' 2)]y lo.,(0,q~) 

+ [102051' 2/125(30' 2)] Y]~"(O,~o) 
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fac to r  m o d u l u s  (F,,): k is a g loba l  scale fac tor :  p,, a n d  
p,. are,  respect ive ly ,  the  e x p e r i m e n t a l  a n d  ca l cu l a t ed  
mass  dens i t i e s  in g c m - 3 :  C',~' a n d  C,".' are  the  exper i -  
m e n t a l  a n d  ca l cu la t ed  re la t ive  we igh t s  o f  a t o m  type  
m in the  Q C  c o m p o s i t i o n  ( Z C " ' =  1). T h e r e f o r e ,  the  

r e f i n e m e n t  o f  the  s t ruc tu ra l  m o d e l  cons i s t s  o f  the  
m i n i m i z a t i o n  o f  a w e i g h t e d  R fac to r  (wR) for  the  
m o d u l i  o f  t he  s t ruc tu re  fac tors ,  c o r r e c t e d  by s o m e  
p e n a l t y  f u n c t i o n s  t ha t  c o n t r o l  the  g o o d n e s s  o f  the  
s t ruc tu ra l  m o d e l  wi th  respec t  to  the  Q C  dens i ty  a n d  

~ Z 

X 
(a) 

Z 

-0 ! ° 

(h) 

Z 
0.2 

- -  - -  ° 

(c) 
Fig. 1. Sections parallel to two fivefold axes of the (a) first, (b) 

second and (c) third surface harmonics of 53m symmetry 
described in Table 3 and corresponding to l=  6, l0 and 12, 
respectively. The harmonics are given with an arbitrary ampli- 
tude and are superposed on a sphere of arbitrary radius. The 
axes are parallel to two twofold axes and the x and z axes are 
those corresponding to the standard coordinate system to which 
the spherical coordinates of Table 3 refer. 

0.2 

0.i 

-0.I 

(a) 

(h) 

01 

-- .2 

(c) 

Fig. 2. Sections perpendicular to a fivefold axis of the same surface 
harmonics as in Fig. I. The axes are the x and y axes of the 
standard coordinate system to which the spherical coordinates 
in Table 3 refer. 
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its chemical composition. The weights of these den- 
sity and composition restraints on the structural 
model are controlled by the input parameters %, and 
w,. Although a pure minimization of wR is possible 
by simply setting wp and w, to zero, this is usually 
inadequate because, in contrast to normal crystals, in 
the QC case the chemical composition and density of 
the structure depend on the structural parameters to 
be adjusted. The structure-factor formula used for 
calculating the structure-factor values F, is (28). The 
integrals in internal space of the radial coordinate 
are computed by the Gauss method. 

Apart from the global scale factor k, adjustable 
structural parameters in the refinement can be the 
occupation probabilities p,,(/.t) for each independent 
AS /x, the amplitudes a'i" and a7 x of the harmonic 
surfaces Z~ in the superpositions of type (26) that 
describe the internal and external contours of each 
AS domain and the symmetry-restricted thermal ten- 
sors I~ .  The AS centres, 0m, are supposed in any 
case to be fully restricted by symmetry and are not 
susceptible to being refined. 

The minimization process can be done either by a 
full least-squares process, or by use of a simplex 
algorithm (Nelder & Mead, 1965); this last method is 
more satisfactory when the number of observations 
is particularly low. In both cases, some constraints 
can be introduced in the refinement parameters. For 
instance, the external contour of an AS can be forced 
to coincide with the internal contour of another AS 
centred at the same point, as seems to happen for 
several ASs in the icosahedral AIPdMn system 
(Boudard et al., 1992). Typically, thermal tensors 13~' 
are constrained to be equal for all atom types within 
each AS (independent of m); however, a more gen- 

l 
Fig. 3. Three-dimensional representation of  the first (1 = 6) surface 

harmonic of symmetry 53m superposed with arbitrary ampli- 
tude on a sphere. 

erai case can be introduced in the refinement where 
thermal tensors for each atom type within an AS are 
constrained to be proportional with fixed propor- 
tionality factors different from 1. Thus, expected 
differences of thermal displacement parameters 
owing to strong mass differences among atom types 
can be taken into account. The program allows 
refinement using several independent data sets simul- 
taneously, for instance X-ray and neutron data. 

The essential data input includes the vector system 
{ai*} defined in (7), the transformation matrix A 
described in (9) and (10), the matrices 1~ and transla- 
tions t corresponding to the generators of the QC 
superspace group, the number of symmetry- 
independent ASs, their point-group symmetry and 
positions of their centres, F matrices describing the 
orientation of each point group in internal space 
with respect to the standard coordinate system 
chosen by the program, the atom types present in 
each AS, the number of surface harmonics to 
describe the inner and outer limits of each AS, and 
the number of points to be used in the numerical 
integrations. 

If the minimization procedure is done using the 
simplex algorithm, the simplicity of the method 
allows additional terms in the function to be mini- 
mized without much effort. For instance, an addi- 
tional penalty function that controls the goodness of 
the structural model with respect to unphysical inter- 
atomic distances can be optionally included in (33). 
This function is defined as 

f =  ~ ~ w,~, f dx,~,(X,), (34) 

where the first sum extends to all independent ASs 
and the second one refers to all ASs in superspace 
that have their centres (relative to the centre of AS 
lz) situated at distances in internal space shorter than 
a certain input parameter and in parallel space 
shorter than a value equivalent to a minimal physi- 
cally reasonable distance d ~ ,  for each pair of ASs 
v,/z. The function sc~ is 1 when xz belongs to the 
domain W, of AS v and zero otherwise, w , ,  is an 
input weight for each relevant pair of ASs. There- 
fore, the parameter f is different from zero if the 
projections in internal space of two ASs, whose 
point projections in parallel space are situated at 
unphysical distances, superpose. The value of f 
increases with the amount of this superposition 
(number of atom pairs at unphysical distances). This 
additional control parameter can be useful in cases 
where realistic atomic distances clearly should limit 
the forms of ASs that are very close (de Boissieu, 
Janot, Dubois, Audier & Dubois, 1991). 

In summary, the program Q U A S I  allows the 
refinement of the contours defining the ASs that 
describe in the superspace a QC structure with 
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continuous symmetry-adapted parameters. The 
refinement is based on a fitting of the structural 
model to experimental diffraction data and observed 
density and chemical composition, under the condi- 
tion that the ASs are parallel to the internal space. 
No additional a priori assumption on the form of the 
ASs is used, except that the deviations of the AS 
contours from a spherical shape do not include 
significant very short wave components. The 
parametrization of the ASs does not restrict a priori 
their form, except in its degree of complexity or fine 
detail, which is limited by the number of terms 
considered in expansion (26). This limit should be 
consistent with the resolution power of the experi- 
ment, and in each case can be decided from the 
comparison of tentative fittings with different 
numbers of surface harmonics for the AS radial 
functions. The program requires an initial very 
approximate guess of the structure in terms of 
spherical ASs of which only the symmetry centres 
must be known with confidence. The fitting process 
can refine the structural model if the experimental 
accuracy is enough for resolving the form of the AS 
surfaces up to the detail assumed by the number of 
harmonics considered. The important point from this 
fitting procedure is that it yields the standard devia- 
tions of the structural parameters adjusted and there- 
fore a clear picture of the degree of experimental 
accuracy and ambiguities of the refined model is 
obtained. If the description of the QC structure is 
wanted in terms of ASs with their shapes more or 
less fixed by physical or geometrical arguments, a 
previous 'free' refinement following the method of 
the program QUASI  can also be very useful. In 
general, the resulting standard deviations for the 
adjusted parameters describing the AS contours will 
be a good guide to the limits of any further idea- 
lization of the AS shapes. 

The program QUASI  has been successfully applied 
to the determination of the structure of icosahedral 
AI57Li32Cull, using published X-ray and neutron 
data (de Boissieu, Janot, Dubois, Audier & Dubois, 
1991; van Smaalen & de Boer, 1991) and the results 
will be published in a subsequent paper. The pro- 
gram is available from the authors upon request. 
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